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Summary 

A preliminary experimental investigation of the thermal behavior of high-speed helical 

gears will be presented. A full-scale torque regenerative test stand has been built to test 

a representative helical gear train as that used in tiltrotor aircraft. Power loss and 

temperature data from a wide range of operating conditions were measured. Loop power 

ranged up to 3730 kW (5000 hp). Drive system components representative of flight 

quality hardware were used in the test program. The results attained in this initial study 

indicated that windage losses due to the high rotational speeds that were tested were far 

more important than the losses due to the gear meshing losses. 

 

Introduction and Background 

High speed and heavily loaded gearing are common-place in rotorcraft systems as used 

in helicopter and tiltrotor transmissions. The components are expected to deliver high 

power from the gas turbine engines to the high-torque / low-speed rotor reducing the 

shaft rotational speed in the range of 25:1 to 100:1 (Refs. [1–14]). These components 

are designed for high power to weight ratio, thus the components are fabricated as light 

as possible with the best materials and processing to transmit the required torque and 

carry the resultant loads without compromising the reliability of the drive system. This is 

a difficult task that is meticulously analyzed and thoroughly tested experimentally prior to 

being ready for application on a new or redesigned aircraft. 
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In aerospace designs a combination of different gearing types (spur, helical, and spiral 

bevel) are needed to successfully connect the engine and rotor systems together.  

Within the drive system the local combination of shaft speed and torque will dictate the 

problems that might be encountered to successfully design the system so that all 

components can surpass the required design life without catastrophic failure. This 

means that gearing in part of the drive system is operating in close proximity to certain 

failure modes depending on the location within the drive system.  

 

In most cases the most important and usually the first calculations that are performed 

are for the bending and contact stress. This may be done using standards such as those 

developed by the AGMA, ISO, DIN, the finite element method, or a combination of 

analysis and experiment verification. All manufacturers have a methodology that they 

utilize and it is typically based on their successes and failures that are part of their 

company proprietary data obtained by analysis and experiments.  

 

In some designs, however, no data is available internal to the manufacturer or through 

the open literature and the company is faced with trying to improve the operational 

behavior of a component or system as the prototype system is under development. The 

thermal behavior or thermal operational characteristics of a system is one of the areas 

that is the least understood and has received the least amount of attention in the open 

literature (Refs. [15–19]). The thermal behavior of a system can cause a success from a 

bending and contact stress viewpoint into a failure from the resultant thermal operational 

characteristics (high operational temperatures, gear tooth scoring, and high drive system 

losses due to the high pitch line velocities). 

 

In certain rotorcraft drive systems, such as that of tiltrotors (see figure 1), a helical gear 

train was required to orient the engine and rotor centerlines on the aircraft. Therefore the 

drive system is not only needed to provide the necessary reduction between the engine 

and rotor, but also has to make the system operate in emergency conditions  

(Refs. [20,21]) such as one engine inoperative (see figure 2) (Ref. [22]).  
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Figure 1: Tiltrotor aircraft. 

 

 
Figure 2: Tiltrotor aircraft drive systems. 

 

Within the gearbox between the engine and the rotor a series of helical gears or a gear 

train is utilized. This part of the drive system operates at very high rotational speed and 

carries the full power of the engine during normal operation. Idler gears receive two 

thermal cycles per revolution as they are driven during one event and become the 

drivers 180 degrees away when passing the load to the next gear during the second 

event. Since these gears have two thermal cycles per revolution and due to their 

extremely light-weight (low thermal capacity) the successful operation of the system in 

all possible normal and emergency conditions can be difficult. 

 

The objective of this paper is to describe a new high-speed helical drive train facility that 

utilizes full size, aerospace quality components and the preliminary results attained at 

Proprotor Shaft

Engine Input
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nominal operational conditions. The system can operate in the current configuration to 

15000 RPM (to simulate the engine input rotational speed) and at power levels to  

3730 kW (5000 hp). The facility, components, and initial thermal results will be 

described. 

 

Test Facility, Test Hardware, Data Acquisition, and Test Procedure 

Test Facility: The test facility designed and fabricated for the study of thermal behavior 

of high-speed helical gear trains is shown in figure 3. The facility is a closed-loop, 

torque-regenerative testing system. There is a test gearbox and slave gearbox that are 

basically mirror images of each other. Each gearbox has an input gear, three idlers, and 

one bull gear. The gearboxes are joined together through the input gears and bull gears 

via shafting.  

 

Within the slave gearbox there is an additional speed increaser section at the first idler. 

This is the method through which the drive system is rotated and facility power is provided. 

In this type of facility only the closed-loop losses (friction losses) are necessary to 

overcome, therefore a drive motor of considerably less power can drive the entire facility. 

Also within the slave gearbox is a rotating torque actuator that is used to rotate the bull 

gear in the slave gearbox relative to the shafting from the test gearbox. This ability to 

rotate the bull gear relative to the shaft permits adjustable loop torque during operation.  

 

Test gearbox

Slave gearbox
Rotating torque actuator

From speed-up
gearbox

Low-speed shaft

High-speed
shaft

48"

 
Figure 3: NASA High-Speed Helical Gear Train Test Facility. 
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increased using a speed-increasing gearbox. The output of the speed-increasing 

gearbox then passes through a torque and speed sensor before connecting to the slave 

gearbox. The entire test stand configuration is shown in figure 4. 

 

Test 
Gearbox

Drive Motor

Low Speed Shaft

Torque
Actuator

High Speed Shaft
Torquemeter

Speed
Increaser
Gearbox

Slave 
Gearbox

Test Facility Arrangement

 
Figure 4: Layout of NASA High-Speed Helical Gear Train Test Facility. 

 

Each gearbox has separate supply and scavenge pumps and reservoirs. Lubrication 

system flow rate is controlled using the supply pressure. Temperature is controlled via 

immersion heaters in the reservoir and heat exchangers that cool the lubricant returned 

from the gearboxes. Each lubrication system has a very fine 3-micron filtration. Nominal 

flow rate into the test or slave gearboxes at 0.55 MPa (80 psi) is approximately 57 l/min 

(15 gpm). 

 

The lubricant used in the tests to be described was a synthetic turbine engine lubricant 

(DoD–PRF–85734). This lubricant is used in gas turbine engines as well as the drive 

systems for rotorcraft. 

 

Test Hardware: The test hardware used in the tests to be described is aerospace 

quality hardware. All components are made of the latest high, hot, hardness gear steels 

and final ground after heat treatment. The basic gear design information is contained in 

table 1. The input and bull gear shafts have bearings to contain the resultant thrust loads 

whereas the idler gears only have roller bearings. For the idler gears there is no 

The facility is powered by a 373 kW (500 hp) DC drive motor and its output speed is 
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resultant axial loads due to the thrust force balance. There is however an overturning 

moment due to the thrust loads that must be carried by the bearing system. A 

photograph of the test hardware with the gearbox partially disassembled is shown in 

figure 5. The bearing inner race is integral to the shafts on the idler gears and at other 

radially-loaded bearings on the input and bull gear shafts. Shrouds for the gears were 

used to minimize the windage losses that high-speed gear systems possess. Locations 

where the radial and axial air-oil temperatures were measured using thermocouples from 

the gear meshes is shown in figure 6.  

 

 

Table 1: Basic Gear Design Data 
Number of teeth Input and 2nd Idler / 1st and 3rd Idler / Bull Gear 50 / 51 / 139 
Module (mm), (Diametral Pitch (1 / in.)) 3.033 (8.375) 
Face Width, mm (in.) 66.7 (2.625) 
Helix Angle, deg. 12 
Gear Material Pyrowear EX-53 

 

 

 

Figure 5: NASA High-Speed Helical Gear Train Test Facility components. 
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Idler Gears Input GearBull Gear

Front View

Radial Thermocouple Locations

Axial Thermocouple Locations

Top View

 
Figure 6: Location and orientation of thermocouples in the test gearbox. 

 

Data Acquisition: The test facility data system monitors three important facility 

parameters during operation. Speed, torque (supplied torque and loop torque), and 

temperature measurements were made during all the testing conducted. The 

measurement for the supplied torque to the facility is accomplished via a commercially 

available torquemeter. The test system loop torque is measured on the bull gear connect 

shaft between the test and slave gearboxes. Due to the high-speed and high-torque 

required at this location, no commercially available system was available. A telemetry 

system was utilized in this location.  

 

The data recording system used in this study has the capability of taking data from all 

parameters at a rate of one sample per second. The data is displayed to the test 

operator in real time. Data is stored in a spreadsheet format and each sensor can be 

viewed at any time during a test when post processing the results. 

 

Test Procedure: The test procedure that was followed for collecting the data to be 

presented was the following. For a given set of conditions the facility was operated at 

those conditions for at least 5 minutes or until the temperatures of interest had stabilized.  
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Preliminary Test Results 

In high-speed gear trains the majority of the losses are found to be due to the resistance of 

the gears imposed by the air-oil environment within the gearbox. Since the system tested 

is an aerospace drive system, lubrication is jet fed and scavenged away by separate 

pumping systems. Also, as mentioned earlier, the gears were shrouded to minimize the 

interaction of the lubricant and the gear members. Therefore the losses are minimized (not 

optimized) and the net windage losses for the system should be reasonable. The gears 

when operating at the highest rotational speed condition approached a very high pitch line 

velocity of approximately 122 m/s (24,000 ft/min). Most aerospace drive systems try to 

keep their pitch line velocities below 127 m/s (25,000 ft/min). 

 

Since two nearly identical gearboxes are used for the closed loop system, the resultant 

drive motor power supplied to the system gives a good representation of the overall 

system losses from the test and slave gearboxes combined. The slave gearbox had an 

additional gear mesh, where the drive motor input was connected, along with the rotating 

torque actuator. Another way of investigating the system performance is achieved 

through the use of thermocouples in certain locations within the gearbox and lubrication 

systems. Thermocouple data was taken at axial and radial fling-off locations and at the 

lubrication system temperature into and out of the gearboxes. The amount of power 

needed to rotate the gear system is shown in figure 7 for two of the lightly loaded 

conditions. Input shaft speed was varied over a wide speed range to the maximum and 

torque was kept nearly constant for the two low levels of torque. Doubling the torque at 

light load had a minimal effect compared to increasing the rotational speed.  

Non-Dimensional Input Shaft Speed
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Figure 7: Drive motor power required to rotate entire test—slave gearbox 

system at two low levels of torque and constant oil inlet temperature. 
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At the higher speed and load conditions more typical of the rotorcraft in flight, the drive 

motor power necessary to drive the entire test-slave gearbox system is shown in  

figure 8. Speed had a very drastic effect on the power required to operate the testing 

system. The combined effects of speed and load are plotted versus the change in 

temperature of the lubricant across the gearbox. The results in figure 9 provide similar 

information of the effect of the two variables on the lubricant temperature increase 

across the gearbox. From figure 10 the effect of speed is far more important than the 

level of torque that is applied to the closed loop system. 

Non-Dimensional Loop Torque
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Figure 8: Drive motor power required at high speed and load,  

at constant oil inlet temperature. 
 

 
Figure 9: Oil temperature increase across test gearbox at  

varying shaft speed, load, and oil inlet temperature. 
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Non-Dimensional Shaft Speed
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Figure 10: Effect of speed on 2nd-3rd idler gear mesh axial  

and radial fling-off temperatures. 
 

Axial - Radial Fling-Off Temperatures: Thermocouples were oriented at the end of 

meshing axial position between the meshing gears and the radial position at about the 

half-face width position. This data was taken axially at each meshing exit and at three 

radial positions as shown in figure 6. For all the data taken in this preliminary study the 

2nd and 3rd idler location indicate the highest temperature during all the tests shown in 

this study. The results from the instrumentation in these locations will now be described. 

 

First the effect of speed on the measuring locations will be described. The data is given 

as the rise in temperature above the inlet lubricant temperature versus input shaft 

rotational speed. The results are shown in figure 10 for a wide speed range at light loop 

load. At low speed the results were nearly the same, but as the rotational speed 

increased the difference between the two measurement locations became greater. 

Another comparison can be made at operating conditions that would typically be seen in 

the operation of the aircraft. Two high-speed conditions over the three high levels of 

torque in the test system loop are shown in figure 11. As has been shown in all the data 

that has been presented in this study, shaft rotational speed dominates all other 

parameters as far as effect on system temperature and losses. 
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(Operating Torque / Max Torque)

0.4 0.6 0.8 1.0

N
on

-D
im

en
si

on
al

 T
em

pe
ra

tu
re

 
(F

lin
g-

O
ff 

- 
In

le
t)

/(
In

le
t)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Axial Fling-Off Temperatures

Radial Fling-Off Temperatures

Max Speed

83% Max Speed

Max Speed

83% Max Speed

 
Figure 11: Effect of load on axial and radial fling-off temperature at high speed and load. 

 

Summary and Conclusions 

A new facility to empirically investigate the thermal behavior of high-speed helical gear 

trains has been described. The facility utilizes aerospace-quality components. Tests 

were conducted at high speed and at varying loads. Using this new capability, a number 

of steady-state tests were conducted with the following results attained: 

 

1. High shaft speeds resulted in large drive motor power requirements. This effect 

was also found in the fling-off temperatures measured from the meshing gears 

and in the lubricant temperature increase from the inlet to exit location of the 

gearbox. 

 

2. The level of load applied in the torque regenerative loop had an effect that was 

minor in comparison to that due to high-speed operation. 

 

3. The axial fling-off temperatures measured were greater than the radial fling-off 

temperatures at all conditions measured.  
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